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We investigate the dynamics of a kicked particle in an infinite square well undergoing frequent measure-
ments of energy. For a large class of periodic kicking forces, constant diffusion is found in such a non-
Kolmogorov-Arnol’d-Moser system. The influence of a phase shift of the kicking potential on the short-time
dynamical behavior is discussed. The general asymptotical measurement-assisted diffusion rate is obtained.
The entanglement between the particle and the measuring apparatus is investigated. There exist two distinct
dynamical behaviors of entanglement. The bipartite entanglement between the system of interest and the whole
spin of the measuring apparatus grows with the kicking steps and it gains a larger value for a more chaotic
system. However, the partial entanglement between the system of interest and the partial spin of the measuring
apparatus decreases with the kicking steps. The relation between the entanglement and quantum diffusion is
also analyzed.
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I. INTRODUCTION

One of the significant consequences of quantum mechan-
ics is that the measurement unavoidably disturbs the mea-
sured system. This is particularly revealed by the so-called
Zeno and anti-Zeno effects �1–3�. The Zeno �anti-Zeno� ef-
fect refers to the inhibition �acceleration� of the evolution
when one attempts to observe it, and can be regarded as two
particular consequences of the disturbance of the observed
system caused by quantum measurement. The first experi-
ment on the quantum Zeno effect was proposed by Cook �4�,
and realized by Itano et al. �5� using coherent Rabi oscilla-
tions in a three-level atom. The opposite phenomenon, the
anti-Zeno effect �decay acceleration by frequent measure-
ments� was recently discovered by Kofman and Kurizki
�2,3�. In the theoretical and numerical investigations of quan-
tum chaotic systems, similar predictions have been presented
�6–10�.

Dynamical localization, i.e., the quantum mechanical sup-
pression of classical chaotic diffusion, was first discovered
by Casati et al. �11� in their investigation of the kicked rotor
�standard map�, which can be understood as a dynamical
version of Anderson localization �12�. Quantum localization
emerges due to quantum interference, which can be de-
stroyed by noise and interactions with the environment, i.e.,
decoherence. Many theoretical and experimental studies
have shown that even a small amount of noise demolishes
localization �13–16�. Quantum measurements can be re-
garded as another type of coupling to the “environment,” i.e.,
the measurement apparatus �17�. Kaulakys and Gontis have
shown that, in the case of the kicked rotor, a diffusive be-
havior can emerge even in the quantum case, if a projective
measurement is performed after every kick �6�. Facchi et al.
have found that projective measurements provoke diffusion
even when the corresponding classical dynamics is regular

�8�. Dittrich and Graham have studied the kicked rotor
coupled to macroscopic systems acting as continuous mea-
suring devices with limited time resolution and found the
diffusive energy growth �18�. Most previous work concern-
ing the anti-Zeno effect in quantum chaos has been concen-
trated on quantum systems whose classical counterparts obey
the Kolmogorov-Arnol’d-Moser �KAM� theorem. So it is in-
teresting to investigate the influence of frequent measure-
ments on the dynamical behavior of the non-KAM system,
such as a kicked particle in an infinite square well �19�. In
this paper, we investigate the dynamics of a kicked particle
in an infinite square well undergoing frequent measurements
of energy. It is found that, for a large class of periodic kick-
ing forces, the dynamical behaviors exhibit diffusion with
constant rate in such a non-KAM system. Then, we investi-
gate how the ratio of the well width and the kicking field
wavelength affect the diffusion of energy in the present situ-
ations. It is shown that not only increasing the kicking field
strength but also increasing the ratio of the well width and
the kicking field wavelength can enhance the diffusion of
energy in such a non-KAM system undergoing repeated
measurements.

Recently, much attention has also been paid to entangle-
ment in the quantum chaotic systems. Several authors have
studied the entanglement in coupled kicked tops or the Dicke
model �20–32�, and found it has a manifestation of chaotic
behavior. It has been demonstrated that classical chaos can
lead to substantially enhanced entanglement and it has been
shown that entanglement provides a useful characterization
of quantum states in higher-dimensional chaotic systems. For
the system of coupled kicked tops, it has been clarified that
two initially separable subsystems can get entangled in a
nearly linear rate depending on the intrinsic chaotic proper-
ties, and their entanglement eventually reaches saturation
�21–24,26,27�. It has also been elucidated that the increment
of the nonlinear parameter of coupled kicked tops does not
accelerate the entanglement production in the strongly cha-
otic region �26�. For a single kicked top composed of collec-*Electronic address: stephenli74@yahoo.com.cn
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tive spin 1
2 , it has been suggested that entanglement can be

regarded as a signature of quantum chaos. Both bipartite en-
tanglement and pairwise entanglement in the spins have been
considered and it has been revealed that bipartite entangle-
ment is enhanced in the chaotic region; nevertheless pairwise
entanglement is suppressed �29�. Most previous work studied
how the intrinsic dynamical properties of the quantum cha-
otic systems affect the entanglement between the sub-
systems. It may be more natural to explore how the entangle-
ment between the system of interest and its surrounding
environment or measuring apparatus affects the chaotic be-
havior, such as the diffusion behavior. Here, we show that
the diffusion of the kicked particle in an infinite square well
undergoing frequent measurements of energy is closely re-
lated with the entanglement of the particle and the measuring
apparatus. It is found that there exist two distinct dynamical
behaviors of entanglement. The bipartite entanglement �de-
fined as entanglement between the particle and the whole
degree of freedom of the measuring apparatus in this paper�
grows with the kicking steps and it gains a larger value for a
more chaotic system. However, the partial entanglement be-
tween pairs �specifically defined as entanglement between
the particle and the partial degree of freedom of the measur-
ing apparatus in this paper� decreases with increasing num-
ber of kicking steps. It is very desirable to investigate the
asymptotical behavior of the bipartite entanglement or the
partial entanglement between pairs. Can the bipartite en-
tanglement reach saturation? In this paper, these are still the
open questions.

This paper is organized as follows. In Sec. II, we investi-
gate the diffusion in non-KAM systems. The dynamics of a
kicked particle in an infinite square well undergoing frequent
measurements of energy is studied in detail. It is found that,
for a large class of periodic kicking forces, the dynamical
behaviors exhibit diffusion with constant rate in such a non-
KAM system. Then, we investigate how the ratio of the well
width and the kicking field wavelength affects the diffusion
of energy in the present situations. It is shown that not only
increasing the kicking field strength but also increasing the
ratio of the well width and the kicking field wavelength can
enhance the diffusion of energy in such a non-KAM system
undergoing repeated measurements. In Sec. III, we focus our
attention on the entanglement between this quantum chaotic
system and the measuring apparatus by exploring the relative
entropy of entanglement. We investigate how the inherent
quantum chaos affects the entanglement between the particle
and measuring apparatus. Two distinct dynamical behaviors
of entanglement are revealed. The bipartite entanglement
grows with the kicking steps. It increases with a higher rate
for the more chaotic system in the short time. However, the
partial entanglement between the particle and the partial
spins of the measuring apparatus decreases with the kicking
steps. Some conclusive remarks and brief discussion about
the experimental verification of measurement-induced diffu-
sion in the quantum dot are given in Sec. IV.

II. DIFFUSION OF THE KICKED PARTICLE
IN AN INFINITE SQUARE WELL UNDERGOING

FREQUENT MEASUREMENTS OF ENERGY

In this section, we investigate the diffusion of the kicked
particle in an infinite square well undergoing frequent mea-

surements of energy. The Hamiltonian investigated here is
described by

H =
p2

2
+ V0�x� + V�x� �

l=−�

�

��t − lT� , �1�

where the potential V0�x� is the confining infinite square well
potential of width �, centered at the position � /2. V�x� is the
external potential. Since the two hard walls destroy the ana-
lyticity of the potential, the KAM scenario breaks down in
the system �1�. In Ref. �19�, the authors have studied quan-
tum chaos of the system �1� with V�x�=k cos�x+��, where �
is a phase shift. It was shown that, for a small perturbation
K �=kT�, the classical phase space displays a stochastic web
structure, and the diffusion rate scales as D�K2.5. However,
in the large-K regime, D�K2. Quantum mechanically, they
observed that the quasieigenstates are power-law localized
for small K and extended for large K. In what follows, we
investigate the evolution of system �1� interrupted by quan-
tum measurements, in the following sense: the system
evolves under the action of the free Hamiltonian
P2 /2+V0�x� for �N−1�T+ t�� t�NT �0� t��T�, undergoes
a kick at t=NT, evolves again freely. Then a measurement of
the energy E is acted on the system at t=NT+ t�. The evolu-
tion of the density matrix can be written as follows:

�NT+t� = LN�t�,

L� = �
n=1

�

Ufree�t��UkickUfree�T − t���n��n���n��n�

�Ufree
† �T − t��Ukick

† Ufree
† �t�� , �2�

where �NT+t� represents the density matrix of the particle at
the time NT+ t�, �n� is the nth eigenstate of the nonperturbed
Hamiltonian, and

Ukick = exp�− iV�x�/	�, Ufree�t� = exp	− i
p2t

2	

 ,

�x�n� =� 2

�
sin�nx�, x � �0,��, n = 1,2, . . . . �3�

From Eq. �2�, we can derive the occupation probabilities
Pn�N���n��NT+t��n� which are governed by

Pn�N� = �
m

ZnmPm�N − 1� , �4�

where

Znm = 
�n�Ukick�m�
2 �5�

are the transition probabilities. In Fig. 1, we display the evo-
lution of occupation probabilities governed by Eqs. �4� and
�5� with the kicking potential V�x�=k cos�x+1� for different
values of k. It is clearly shown that the particle can be driven
by the external periodic field from the ground level to the
higher excited levels. In what follows, we will derive an
analytical expression for the diffusion rate defined by
D��EN−E0� /N, where EN is the expected value of energy of
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the particle at the time NT+ t�. By making use of Eqs. �4� and
�5�, we can obtain

EN = �
n=1

�
	2n2

2
Pn�N�

= EN−1 +
1

2�
�

0

�

�V��2dx

−
1

2�
�
m=1

� �
0

�

�V��2 cos�2mx�dx Pm�N − 1� , �6�

where V� denotes the first-order derivative of V�x� upon x.
From Eq. �6�, we can derive a sufficient condition related to
the diffusion with constant rate. If V�x� satisfies the follow-
ing expression:

�V��2 = a0 + �
m=1

�

am sin�2mx� , �7�

where am �m=0,1 ,2 , . . . � are the expansion coefficients
which should ensure a positive definite value of the function

a0+�m=1
� am sin�2mx�, the diffusion rate D is the constant

a0 /2. As an illustration, we consider the case with V�x�
=k cos�x+� /4�, which obviously satisfies Eq. �7� and the
corresponding expansion coefficients are a0=a1=k2 /2
�am=0 for m
1�. Then, in this case, iterating Eq. �6�, we can
obtain

EN = E0 +
k2N

4
, �8�

which leads to D=k2 /4. For V�x�=k cos�x+��, we have

EN = EN−1 +
k2

4
+

k2 cos�2��
8

P1�N − 1� . �9�

The above equation shows that the increase of energy after
every step is closely related to the ground state population of
the previous step. Equation �9� also implies that the phase
shift � plays a significant role in the short-time dynamical
behavior of the kicked particle in this situation. The diffusion
will be enhanced or suppressed by adjusting the sign of
cos�2��. However, since limN→�P1�N�=0, the energy diffu-
sion is asymptotically linear and independent of � for any
values of k. In Fig. 2, the values of P1 at the time NT+ t� are
plotted as a function of N for different values of k. It is
shown that P1�N� decreases with increasing N, and the larger
the value of k, the more rapid the decay of the particle from
the ground state. Therefore, according to Eq. �9�, we know
that the corresponding diffusion rate of the nonunitary evo-
lution governed by Eq. �2� with V�x�=k cos�x+1� increases
with N and eventually converges to k2 /4.

In Ref. �33�, the authors have investigated the quantum
chaotic dynamics of the system �1� with V�x�=cos�2Rx�,
where R is a ratio of two length scales, namely, the well
width and the kicking field wavelength. If R is a noninteger
the dynamics is non-KAM. It was shown that time-evolving
states exhibit considerable R dependence, and tuning R to
enhance classical diffusion can lead to significantly larger

FIG. 1. The occupation probabilities Pn of the particle undergo-
ing the Nth kick and the Nth projective measurement of the energy
are depicted for different values of k. The particle is initially in the
ground state and the kicking potential V�x�=k cos�x+1� is chosen
as an illustration. k= �a� 4	, and �b� 10	.

FIG. 2. The ground occupation probabilities P1 of the particle at
the time NT+ t� are plotted as a function of N for different values of
k. The particle is initially in the ground state and the kicking poten-
tial V�x�=k cos�x+1� is chosen as an illustration. Solid square, k
=0.5	; solid circle, k=	; solid triangle, k=2	.
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quantum diffusion for the same field strengths. It is interest-
ing to investigate how the values of R affect the diffusion
of energy in the present situations. Substituting V�x�
=k cos�2Rx� into Eq. �6�, we can obtain

EN = EN−1 + k2R2 −
k2R sin�4R��

4�

+
k2R3 sin�4R��

�
�
m=1

�
1

4R2 − m2 Pm�N − 1� . �10�

The above equation implies that not only increasing the kick-
ing field strength k but also increasing the ratio R of the well
width and the kicking field wavelength can enhance the dif-
fusion of energy in such a non-KAM system undergoing re-
peated measurements. To elucidate it, we merely need to
consider three different cases listed in the following. �1�
When R is integer or half integer �i.e., 1

2 , 3
2 , 5

2 , . . .�, Eq. �10�
can be replaced by

EN = EN−1 + k2R2 +
k2R2

2
P2R�N − 1� , �11�

which is very similar to Eq. �9�. �2� When R= �2j+1� /4
�j=0,1 ,2 , . . . �., Eq. �10� can be rewritten as

EN = EN−1 + k2R2, �12�

which implies that the diffusion rate is a constant k2R2. �3�
For any other values of R, the diffusion behavior becomes
very complex. In what follows, we analyze both the short-
time dynamical behavior and the asymptotical dynamical
behavior. For V�x�=k cos�2Rx�, the transition matrix
�n�Ukick�m� can be expressed as

�n�Ukick�m� = J0�k/	���n,m − �n,−m� +
1

�
�
j=1

�

�− i� jJj�k/	�

� �Cj�n − m� − Cj�n + m�� , �13�

where Jn�k /	� is the Bessel function and

Cj�l� = �4�− 1�l jR sin�2jR��
4j2R2 − l2 for 2jR � �l� ,

� for 2jR = �l� .
�14�

In Fig. 3, the decay from the initial ground state of the par-
ticle is depicted for different values of R. It is shown that the
larger the value of R, the more rapid the decay of the particle
from the ground state.

If the particle is initially in the ground state, i.e., Pn�0�
=�n,1, we have Pm�N−1�= �ZN−1�m,1, where Z�Zl1,l2

is the
transition probabilities matrix defined by Eq. �5�. Substitut-
ing it into Eq. �10�, and iterating it, we can obtain

EN = E0 + Nk2R2 −
Nk2R sin�4R��

4�

+
k2R3 sin�4R��

�
�
i=0

N−1

�
m=1

�
1

4R2 − m2 �Zi�m,1

= E0 + Nk2R2 −
Nk2R sin�4R��

4�

+
k2R3 sin�4R��

�
�
m=1

�
1

4R2 − m2	1 − ZN

1 − Z



m,1
. �15�

In deriving Eq. �15�, we have used the formulation

�
i=0

N−1

�Zi�m,1 = 	1 − ZN

1 − Z



m,1
. �16�

It is not difficult to verify that

lim
N→�

	1 − ZN

1 − Z



m,1
= 	 1

1 − Z



m,1
, �17�

which implies that

lim
N→�

EN − E0

N
= k2R2 −

k2R sin�4R��
4�

. �18�

The right side of Eq. �18� is a monotonically increasing func-
tion of R. So one can always enhance the asymptotical dif-
fusion rate by increasing the ratio of the well width and the
kicking field wavelength in this case. In fact, the procedure
derived above can also be applied to Eq. �6�, and the asymp-
totical diffusion rate limN→���EN−E0� /N� for any kicking
potential V�x� is given by �1/2���0

��V��2dx �note that the
potential V�x� is assumed to be differentiable�. For clarifying
it, we substitute Pm�N−1�= �ZN−1�m,1 into Eq. �6�, where the
particle is assumed to be in the ground state. Similarly, after
iterating it, we have

FIG. 3. The ground occupation probabilities P1 of the particle at
the time NT+ t� are plotted as a function of N for different values of
R. The particle is initially in the ground state and the kicking po-
tential V�x�=k cos�2Rx� is chosen as an illustration, k=	. Solid
square, R=� /4; solid circle, R=� /2; solid triangle, R=�.
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EN = E0 +
N

2�
�

0

�

�V��2dx

−
1

2�
�
m=1

� �
0

�

�V��2 cos�2mx�dx	1 − ZN

1 − Z



m,1
. �19�

Since the third term on the right side of Eq. �19� converges to
a finite value as N→� �here, without loss of generality, it is
assumed that 1 / �1−Z� is well defined�, the asymptotical dif-
fusion rate is given by �1/2���0

��V��2dx, which is very simi-
lar to the result obtained in Ref. �8� for the measurement-
induced diffusion of the kicked rotor. This similarity reveals
the asymptotical equivalence caused by frequent measure-
ments of the kicked rotor and the kicked particle confined in
an infinite well, although the former is a KAM system and
the latter is a non-KAM system.

III. ENTANGLEMENT BETWEEN THE PARTICLE
AND THE MEASURING APPARATUS

As mentioned in Ref. �19�, the experimental realization of
system �1� can be achieved by putting cold atoms in a quasi-
one-dimensional quantum dot. The atoms are then driven by
a periodically pulsed standing wave of light. Then, similar to
the procedure discussed in Ref. �8�, the projective measure-
ment of the energy at the time t� after every kick can be
schematized by associating an additional degree of freedom,
such as a spin, with every energy eigenstate. This is easily
achieved by adding the following Hamiltonian �34� to sys-
tem �1�:

Hmea =
�	

2 �
n,N

�n��n� � �1
�n,N���t − NT − t�� , �20�

where �1
�n,N�= �+ ��n,N��−�+ �− ��n,N��+� is the first Pauli matrix

of the spin recording the energy information in channel
�n ,N�, where �+ ��n,N�, �−��n,N� denote the spin-up and spin-
down states of the spin ��n,N�, respectively. In fact, the evo-
lution operator U�NT+ t�+ ,NT+ t�−� caused by Hmea can be
simply expressed as

U�NT + t�+,NT + t�−� = exp	− i
�

2 �
n

�n��n� � �1
�n,N�


= − i�
n

�n��n� � �1
�n,N�, �21�

which is actually a generalized d-dimensional controlled-NOT

gate operation. The controlled-NOT gate operation can be re-
garded as an entangler. We assume that all of the spins are
initially in the spin-down states. It is not difficult to demon-
strate that the total Hamiltonian of �1� plus Hmea can result in
the evolution governed by Eq. �2� of the reduced density
matrix of the measured system. In order to verify it, we need
only insert U��N−1�T+ t�+ , �N−1�T+ t�−� into the time evo-
lution operator generated by the Hamiltonian �1�

�NT+t�− = Tr���N−1��	�
n,m

U1�n��n���N−1�T+t�−�m��m�U1
†

� �1
�n,N−1�

�
j

�− ��j,N−1��− ��1
�m,N−1��

= �
n

U1�n��n���N−1�T+t�−�n��n�U1
† �22�

where U1=Ufree�t��UkickUfree�T− t��, and �NT+t�− is the re-
duced density matrix of the particle at the time NT+ t�−. In
Eq. �22�, Tr���N−1�� denotes the tracing over all of the spins
labeled by ��i,N−1� �i=1,2 , . . . �. Equation �22� implies that
the coupling between the system of interest and the apparatus
causes the total system to become an entangled state and the
reduced density matrix of the particle is completely projected
on the energy eigenstates. Iterating Eq. �22�, we obtain

�NT+t�− = L̃N�t�−,

L̃� = �
n

U1�n��n���n��n�U1
†, �23�

which is exactly the expression of Eq. �2�. As mentioned
above, the system of interest and the measuring apparatus
become an entangled state in this situation. It would be very
interesting to investigate how the inherent quantum chaos
affects the entanglement between the particle and measuring
apparatus. In the following, we confine our discussions in the
bipartite entanglement between the particle and all of the
spins, and the partial entanglement between the particle and
the partial spins ��N�. It is found that the bipartite entangle-
ment and the partial entanglement between pairs exhibit two
distinct dynamical behaviors. For characterizing the en-
tanglement, we adopt the relative entropy of entanglement
defined by Er���=min���S�� ��� �35�, where � is the set of
all disentangled states, and S�� ����Tr���log2�−log2��� is
the quantum relative entropy. The relative entropy of en-
tanglement is a good measure of quantum entanglement, and
it reduces to the von Neumann entropy of the reduced den-
sity matrix of either subsystem for pure states. So the bipar-
tite entanglement between the particle and all of the spins
can be characterized by the von Neumann entropy of the
reduced density matrix of the particle if both the particle and
the measuring apparatus are initially in a pure state. At the
time t=NT+ t�+, the bipartite entanglement can be expressed
as

SV�N� = − Tr��NT+t�+log2 �NT+t�+� = − �
i=1

�

Pi�N�log2 Pi�N� .

�24�

In Fig. 4, the von Neumann entropy SV�N� in the case with
V�x�=k cos�2Rx� is plotted for three different values of R. It
is shown that the entanglement grows with the kicking steps.
The growth of entanglement exhibits considerable R depen-
dence, and increasing R to enhance classical diffusion can
lead to significantly larger entanglement for the same field
strengths in this case. By tracing the degrees of freedom of
the additional spins, the particle and the spins ��N� at time
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t=NT+ t�+ are in a maximally correlated state �36�, which is
given by

�sm = �
n,m

�n��n�U1��N−1�T+t�+U1
†�m��m�

� �1
�n,N���

j
�− ��j,N��− ���1

�m,N�. �25�

The partial entanglement quantified by the relative entropy
of entanglement between the particle and the partial spins
��N� at the time t=NT+ t�+ can be calculated as

Er�N� = − �
n=1

�

Pn�N�log2 Pn�N� + Tr��sm log2 �sm�

= − �
n=1

�

Pn�N�log2 Pn�N� + �
n=1

�

Pn�N − 1�log2 Pn�N − 1� .

�26�

Equation �26� implies that the partial entanglement between
pairs Er�N� exactly equals SV�N�−SV�N−1�, i.e., the incre-
ment of the bipartite entanglement. So the bipartite entangle-
ment can also be rewritten as SV�N�=�n=1

N Er�n�, which
means that the bipartite entanglement SV�N� equals the area
of the zone below the discrete curve of Er�n� �n=1, . . . ,N�.
In Fig. 5, Er�N� is displayed for three different values of R.
Contrary to the increase of the bipartite entanglement, we
can see that Er first achieves its maximal value at t=T+ t�+,
then rapidly decreases with N. There exist two main factors
that could affect the partial entanglement between pairs. One
is the mixedness �ordinarily characterized by the von Neu-
mann entropy or the linear entropy�, and the other is the
coherence of the particle �characterized by the nondiagonal
elements of density matrix�. The increase of coherence can
enhance the entanglement, while the increase of mixedness
usually causes a decrease of entanglement. So, in this case,

diminution of partial entanglement between the particle and
the partial spins ��N� may be owing to the fact that the
measurement-assisted quantum diffusion step by step in-
creases the mixedness of the system of interest, which plays
a more prominent role in the partial entanglement between
pairs than the other factor.

At the end of this section, some natural questions arise:
How does the bipartite entanglement behave asymptotically?
What is the relation between the asymptotical bipartite en-
tanglement and the asymptotical diffusion rate? In the
present study, these are still the open questions and need to
be investigated in future work.

IV. CONCLUSIONS

In this paper, we study the diffusion and entanglement in
the system of a kicked particle in an infinite square well
under frequent measurements. It is shown that the
measurement-assisted diffusion rate can be constant for a
large class of kicking fields. The asymptotical diffusion rate
is also given as �1/2���0

��V��2dx. Then we investigate the
bipartite entanglement between the particle and the whole
measuring apparatus and partial entanglement between the
particle and the partial spins. It is found that there exist two
distinct dynamical behaviors of entanglement. The bipartite
entanglement grows with the kicking steps and it gains a
larger value for a more chaotic system. However, the partial
entanglement between the system of interest and the partial
spins of the measuring apparatus decreases with increasing
number of kicking steps. For a more chaotic system, the
bipartite entanglement grows at a higher rate at short times.
The increment of the bipartite entanglement between two
coterminous measurements equals the partial entanglement
between pairs, which asymptotically tends to zero. However,
this does not imply that the bipartite entanglement asymp-

FIG. 4. The von Neumann entropy SV�N� of the reduced density
matrix of the particle at the time NT+ t�+ is plotted as a function of
N for different values of R. The particle is initially in the ground
state and the kicking potential V�x�=k cos�2Rx� is chosen as an
illustration; k=	. Solid square, R=� /4; solid circle, R=� /2; solid
triangle, R=�.

FIG. 5. The pairwise entanglement characterized by the relative
entropy of entanglement Er�N� of the subsystem containing the par-
ticle and the partial spins ��N� at the time NT+ t�+ is plotted as a
function of N for different values of R. The particle is initially in the
ground state, and the spins are initially in the spin-down states.
V�x�=	 cos�2Rx�; solid square, R=� /4; solid circle, R=� /2; solid
triangle, R=�.
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totically reaches saturation. Whether or not there exists a
saturation of bipartite entanglement in such a joint system �in
which the dimension of the Hilbert space is infinite� is still
an open question in this paper. Nevertheless, we can con-
clude that the diffusion of the system and the bipartite en-
tanglement of the system and the whole measuring apparatus
exhibit cooperation in the case with a small value of intensity
of the kicking field, namely, the diffusion enlarges the effec-
tive Hilbert space to be entangled with the measuring appa-
ratus and hence enlarges the bipartite entanglement, and con-
versely the bipartite entanglement destroys the local
coherence of the system of interest and enhances the diffu-
sion.

It has been mentioned that the quantum dot might be a
suitable candidate for experimental realization of the system
�1�. One of the key steps is the implementation of repeat
measurements of the energy. It is unambiguous that direct
frequent measurement of the energy of the atom confined in
the quantum dot is not a trivial task. In the past few years,
much attention has been paid to quantum measurement
schemes in quantum dots such as the quantum point contact
and so on. In some situations, the quantum point contact can
cause dephasing of the quantum state. We briefly discuss the
system in the presence of the particular dephasing that is
described by the following master equation:

��

�t
= −

i

	
�H�t�,�� −


�t�
2

†p2,�p2,��‡ , �27�

where H�t� is given by Eq. �1� and 
�t� is a constant 
0 or
�l=−�

� �0��t− lT− t��. It is not difficult to verify that two cases
are equivalent if 
0T=�0. The evolving density operator in
the latter case is completely reduced to the one described by
Eq. �2� when �0→�. In the case with 
0T�1, the evolution
of the density operator described by Eq. �27� closely ap-
proximates to Eq. �2�. Therefore, to some extent, one can
also regard the repetitive measurement of energy as a “non-
coherent energy-preserving kick.” Though the influence of
the relaxation process on the dynamics needs to be taken into
account when the numerical simulation of the realistic situ-

ation is executed. Usually, the dephasing time is much
shorter than the relaxation time in quantum dots. This fact
provides us with the possibility of experimentally studying
the measurement-induced dynamical behavior of system �1�
via the dephasing process. Recently, some authors have stud-
ied the effects of measurements on dynamical localization in
the kicked rotor model simulated on a quantum computer
�37�. It was shown that localization can be preserved for
repeated single-qubit measurements. A transition from a lo-
calized to a delocalized phase was revealed, which depends
on the system parameters and the choice of the measured
qubit. To a certain extent, the local measurement on one
qubit can be regarded as a kind of partial dephasing in the
kicked rotor according to the encoding scheme. It could be
conjectured that the different choices of the measured qubit
in the quantum computer scheme have similar effects to
those of different dephasing coefficients on the dynamical
behavior of simulated quantum chaotic systems. Therefore, it
is also very interesting to investigate whether certain kinds of
transition can occur in a system of a kicked particle inside an
infinite square well when the dephasing coefficient varies.

Recently, the kicked Bose-Einstein condensate �BEC� has
attracted much attention. Some authors have investigated the
quantum resonance and antiresonance of a kicked BEC con-
fined in a one-dimensional box �38�. The results presented in
this paper can be generalized to those systems. It is expected
that the frequent measurement of the energy or dephasing
mechanism may significantly change their dynamical behav-
iors. If the nonlinear interatomic interaction is ignored, they
are reduced to the present case. For the situation with a very
small nonlinear interatomic interaction, we can adopt a simi-
lar approximation procedure to that in Ref. �38� to investi-
gate the effect of the nonlinear interatomic interaction on
measurement-induced diffusion.
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